The genetic basis of life cycle length has not been studied because the long life cycles complicate genetic crosses. An early explanation for life cycle control in periodical cicadas proposed a one-locus, two-allele system in which either the 13- or the 17-year cycle is dominant10,11. Differences between the two life cycle lengths may be attributable to differences in juvenile developmental rate12,13, which may be regulated by one locus or a small number of loci. However, life cycle regulation in periodical cicadas may not always be strict, because 4-year acceleration and/or deceleration of emergences have been observed in both groups of cicadas, events unlikely to have resulted from fortuitous mass mutation14. These observations have led to the hypothesis that all periodical cicadas possess monomorphic developmental plasticity14 and that this common plasticity underlies the switching of life cycle lengths triggered by environmental cues (e.g., a drastic change in temperature during juvenile development), followed by a genetic change in a life-cycle control locus (genetic accommodation15), which enables a permanent life cycle shift4.
結果 (
日本語) 1:
[コピー]コピーしました!
The genetic basis of life cycle length has not been studied because the long life cycles complicate genetic crosses. An early explanation for life cycle control in periodical cicadas proposed a one-locus, two-allele system in which either the 13- or the 17-year cycle is dominant10,11. Differences between the two life cycle lengths may be attributable to differences in juvenile developmental rate12,13, which may be regulated by one locus or a small number of loci. However, life cycle regulation in periodical cicadas may not always be strict, because 4-year acceleration and/or deceleration of emergences have been observed in both groups of cicadas, events unlikely to have resulted from fortuitous mass mutation14. These observations have led to the hypothesis that all periodical cicadas possess monomorphic developmental plasticity14 and that this common plasticity underlies the switching of life cycle lengths triggered by environmental cues (e.g., a drastic change in temperature during juvenile development), followed by a genetic change in a life-cycle control locus (genetic accommodation15), which enables a permanent life cycle shift4.
翻訳されて、しばらくお待ちください..
