Internal combustion engine has prevented many suppliers and universiti翻訳 - Internal combustion engine has prevented many suppliers and universiti英語言う方法

Internal combustion engine has prev

Internal combustion engine has prevented many suppliers and universities from studying engine controls as an expensive engine test facility and human resources to maintain and operate it are necessary. Powertrain control including HEV has been an active research area and much more involvement of university has been welcome. The benchmark problem distributed by SICE (Society of Instrument and Control Engineers) in 2006 (Ohata 2008) showed that a cycle by cycle engine model was useful for universities to be involved in engine controls of which control timings are critical.
Current powertrain control system developments greatly take advantages of the advanced simulation technologies including Model In the Loop Simulation (MILS), Software In the Loop Simulation (SILS), Processor In the Loop Simulation (PILS), and Hardware In the Loop Simulation (HILS). Efficient developments were no more if engine simulators cannot be applied to mitigate the complexity issue of powertrain control system development. MILS, SILS, and PILS are based on the whole simulation models of the engine and the relevant portions. However, there would be parts and sub-systems not easy to be modeled with the sufficient accuracy. HILS can mitigate the issue by putting actual parts and sub-systems into the simulator. There have been some types of vehicle simulator such as the one in which only the engine is an actual sub-system. However, engine itself has been treated as a unity not divided into the actual and the virtual portions.
This paper proposes the engine simulator in which the piston-crank mechanism is an actual system and gas flow from the intake to the exhaust strokes including the combustion stroke is the model. The term “actual” mentioned above does not mean the real product but just the physical scale model in this study. It allows us to analyze detailed phenomena difficult to recreate by simulations such as the elastic effect of the crank shaft and to combine an actual electric motor and a generator with the drivetrain starting from the crank shaft to develop a HEV simulator.
This paper is organized as follows: In the Section 2, the concept of the proposed engine simulator is described. In Section 3, the detail of the piston-crank system designed in this study is introduced. In Section 4, a cycle by cycle simulator, which is based on the model distributed by the joint committee of SICE and JSAE (Ohata 2012), is briefly explained. In Section 5, a dynamic characteristics compensation based on a disturbance observer is explained. This paper is summarized in the last section.
0/5000
ソース言語: -
ターゲット言語: -
結果 (英語) 2:[コピー]
コピーしました!
内燃机防止许多供应商和大学学习发动机控制作为一种昂贵的发动机试验设施和人力资源的维护和操作是必要的。包括HEV动力总成控制一直是一个活跃的研究领域和更多的参与大学一直欢迎。基准问题的分布式SICE(仪表与控制工程师在2006(2008)社会Ohata)表明,通过循环发动机模型的一个周期是有用的大学是在发动机控制,定时控制是至关重要的。
目前的动力总成控制系统发展充分先进的仿真技术包括在环仿真模型的优点(MILS),在环仿真软件(SILS),在环仿真处理器(PILS),硬件在环仿真(HILS)。高效的发展如果没有更多的发动机模拟器不能用于减轻动力传动控制系统发展的复杂性问题。密耳,锡尔斯,和PILS是根据发动机的整体仿真模型和相关的部分。然而,会有部分和子系统,不容易与足够的精度建模。HILS可以通过把实际的零件和子系统模拟器的减轻问题。有一些类型的车辆模拟器,如一个只有引擎是一个实际的系统。然而,引擎本身被视为一个不分为实际和虚拟部分统一。
本文提出了发动机模拟器中,曲柄连杆机构是一个实际的系统中,气体从进气流量的排气冲程,包括燃烧冲程模型。“实际”上述并不意味着真正的产品只是在这项研究中的物理模型。它使我们能够详细分析的现象难以重现的模拟,如曲轴的弹性效应,结合一个实际的电机与传动系由曲柄轴开始开发混合动力模拟器发电机。
本文的组织如下:在第2节中,描述了该发动机模拟器的概念。3节,介绍了本研究设计的曲柄连杆系统详细。在4节中,通过循环模拟器一个周期,这是基于模型的规模与日本联合委员会(Ohata分布作了简要说明,2012)。在5节中,基于干扰观测器的动态补偿特性的解释。本文总结了在最后一节
翻訳されて、しばらくお待ちください..
結果 (英語) 3:[コピー]
コピーしました!
Internal combustion engine has prevented many suppliers and universities from studying engine controls as an expensive engine test facility and human resources to maintain and operate it are necessary. Powertrain control including HEV has been an active research area and much more involvement of university has been welcome. The benchmark problem distributed by SICE (Society of Instrument and Control Engineers) in 2006 (Ohata 2008) showed that a cycle by cycle engine model was useful for universities to be involved in engine controls of which control timings are critical.
Current powertrain control system developments greatly take advantages of the advanced simulation technologies including Model In the Loop Simulation (MILS), Software In the Loop Simulation (SILS), Processor In the Loop Simulation (PILS), and Hardware In the Loop Simulation (HILS). Efficient developments were no more if engine simulators cannot be applied to mitigate the complexity issue of powertrain control system development. MILS, SILS, and PILS are based on the whole simulation models of the engine and the relevant portions. However, there would be parts and sub-systems not easy to be modeled with the sufficient accuracy. HILS can mitigate the issue by putting actual parts and sub-systems into the simulator. There have been some types of vehicle simulator such as the one in which only the engine is an actual sub-system. However, engine itself has been treated as a unity not divided into the actual and the virtual portions.
This paper proposes the engine simulator in which the piston-crank mechanism is an actual system and gas flow from the intake to the exhaust strokes including the combustion stroke is the model. The term “actual” mentioned above does not mean the real product but just the physical scale model in this study. It allows us to analyze detailed phenomena difficult to recreate by simulations such as the elastic effect of the crank shaft and to combine an actual electric motor and a generator with the drivetrain starting from the crank shaft to develop a HEV simulator.
This paper is organized as follows: In the Section 2, the concept of the proposed engine simulator is described. In Section 3, the detail of the piston-crank system designed in this study is introduced. In Section 4, a cycle by cycle simulator, which is based on the model distributed by the joint committee of SICE and JSAE (Ohata 2012), is briefly explained. In Section 5, a dynamic characteristics compensation based on a disturbance observer is explained. This paper is summarized in the last section.
翻訳されて、しばらくお待ちください..
 
他の言語
翻訳ツールのサポート: アイスランド語, アイルランド語, アゼルバイジャン語, アフリカーンス語, アムハラ語, アラビア語, アルバニア語, アルメニア語, イタリア語, イディッシュ語, イボ語, インドネシア語, ウイグル語, ウェールズ語, ウクライナ語, ウズベク語, ウルドゥ語, エストニア語, エスペラント語, オランダ語, オリヤ語, カザフ語, カタルーニャ語, カンナダ語, ガリシア語, キニヤルワンダ語, キルギス語, ギリシャ語, クメール語, クリンゴン, クルド語, クロアチア語, グジャラト語, コルシカ語, コーサ語, サモア語, ショナ語, シンド語, シンハラ語, ジャワ語, ジョージア(グルジア)語, スウェーデン語, スコットランド ゲール語, スペイン語, スロバキア語, スロベニア語, スワヒリ語, スンダ語, ズールー語, セブアノ語, セルビア語, ソト語, ソマリ語, タイ語, タガログ語, タジク語, タタール語, タミル語, チェコ語, チェワ語, テルグ語, デンマーク語, トルクメン語, トルコ語, ドイツ語, ネパール語, ノルウェー語, ハイチ語, ハウサ語, ハワイ語, ハンガリー語, バスク語, パシュト語, パンジャブ語, ヒンディー語, フィンランド語, フランス語, フリジア語, ブルガリア語, ヘブライ語, ベトナム語, ベラルーシ語, ベンガル語, ペルシャ語, ボスニア語, ポルトガル語, ポーランド語, マオリ語, マケドニア語, マラガシ語, マラヤーラム語, マラーティー語, マルタ語, マレー語, ミャンマー語, モンゴル語, モン語, ヨルバ語, ラオ語, ラテン語, ラトビア語, リトアニア語, ルクセンブルク語, ルーマニア語, ロシア語, 中国語, 日本語, 繁体字中国語, 英語, 言語を検出する, 韓国語, 言語翻訳.

Copyright ©2024 I Love Translation. All reserved.

E-mail: